
Background 
 

A data vector that exists as the sum of signal plus systematic noise plus shot noise will be denoted in the 

following ways for these four spaces, 

 

                                  

                               

                                   

                                  

 

 ,  ,   and   are data vectors;  ,  ,   and   are signal vectors;  ,  ,   and   are systematic noise 

vectors; and  ,  ,   and   are shot noise vectors in their respective spaces. 

 

The signal covariance matrix is  

            

 

where the  th column of the orthonormal matrix   contains the  th eigenvector     of    and the  th 

diagonal element of      equals   ’s  th eigenvalue   
   

.  

 

       

        

 

As an orthonormal matrix, the columns of   comprise a full basis that spans cell-space.  Therefore any 

signal vector   can be represented as a linear combination of them, 

 

        

      

   

  

 

where the expansion coefficient    equals the projection of the signal onto the  th signal mode, 

           In the basis  , the signal coefficients are mean zero,       , and statistically orthogonal, 

 

     
    

  
   

         

               
   

 

 

  



Analytic Power Spectrum – General Construction 
 

Using Signal Eigenmodes 
 

Let’s start by figuring out the power spectrum in discretized bins.  There are a couple different ways to 

do this, but I will employ a non-parametric estimator that utilizes the signal eigenmodes.  I establish in 

Appendix A that the power spectrum of the clustering signal can be represented as a variance weighted 

sum over all   Fourier-transformed signal eigenvectors   , 

 

                   
   

         
 

   

  

 

Because the eigenvectors    are discretized, the best we can do in finding each        is a fast Fourier 

transform.  This means we will have to split  -space into a discrete number of (about 480 or so) bins.  

Let the boundaries of the  th bin be    and     .  The power in this bin is the average of the Fourier 

amplitudes between those two band powers, 

 

        
               

 

   

  

 

where 

              
                          

                                  
   

 

Using the eigenvalues   
   

 will recover the fiducial power spectrum used in our model.  But to assess the 

quality of the signal reconstruction, we should replace this with the variance of the mean-zero 

estimated signal coefficients in signal-space such that 

 

         
    

 

   

  

 

where                  and        .  Note that once the signal modes and Fourier grid spacings are 

set, the   coefficients need only be solved for once.  New estimated signal coefficients can be plugged in 

thereafter to yield their unique power spectrum. 

 

The analytical method finds the power spectra using the variances of various signal and noise 

components.  To plot their spectra these variances must be computed in signal-space. 

 



SIGNAL 

 

The variance of the signal along each dimension of signal-space is trivial, 

 

          
   

  

 

SHOT NOISE 

 

In signal-space, a shot noise overdensity vector is         .  The  th element of     equals    

       
 
   .  The variance of this component is 

 

             
        

 

   

      
  

    

 

   

  

 

where      is the expected number of galaxies in the  th cell. 

 

ZERO-POINT NOISE 

 

In signal-space, a zero-point noise overdensity vector is          while in noise-space we have        .  

It follows that         where      .  The  th element of     equals               
   .  The 

variance of this component is 

 

             
           

 

   

      
   

   

 

   

  

 

DATA VECTOR 

 

Because signal, shot noise and zero-point noise are independent of one another, it follows that 

 

                                                    

 

          
   

      
   

   

 

   

      
  

    

 

   

  

 

Each dimension’s variance subsequently scales the     coefficients which are then combined to yield 

power spectra.  

  



We can repeat the analysis by using the Fourier transforms of the eigenmodes in cell-space.  This 

situation offers the advantage of not needing to recreate Fourier modes and     coefficients if the 

signal model changes.  The eigenmodes are also straightforward in that each is a unit vector with value 1 

in one element and 0 in all others. 

 

We allow the discretized set of cells to act as a standard basis where unit vector     equals 1 in the  th 

element and zero otherwise.  As an example let’s consider the power of the shot noise since this is 

diagonal in cell-space.  

 

                 
 

    
         

 

   

  

 

Because the eigenvectors    are discretized, the best we can do in finding each        is a fast Fourier 

transform.  This means we will have to split  -space into a discrete number of (about 480 or so) bins.  

Let the boundaries of the  th bin be    and     .  The power in this bin is the average of the Fourier 

amplitudes between those two band powers, 

 

      
 

    
            

 

   

  

 

where 

                  
                          

                                  
   

 

Using the variance        in equation X will deliver the power spectrum of the shot noise model.  

Because the overdensity of the shot noise (and signal and zero-point noise for that matter) equals zero 

for all  , the variance equals the expected square of the shot noise term.  The power spectrum of a shot 

noise realization is therefore calculable through 

 

        
    

 

   

  

 

Rather than find the power spectra of individual vectors, the analytical method finds the power spectra 

using the variances of various signal and noise components.  The standard basis defined by cell-space 

has already been Fourier transformed and the results stored in the     coefficients.  What remains is 

expressing the variances of each component in cell-space.  Consider a random data vector in cell-space, 

       . 

 

 

 



SHOT NOISE 

 

The variance of the shot noise along each dimension of cell-space is trivial, 

 

        
 

    
  

 

SIGNAL 

 

In cell-space a signal vector is      .  The  th element of   equals            
 
   .  The variance of 

this component is 

 

             
        

 

   

      
    

   

 

   

  

 

ZERO-POINT NOISE 

 

In cell-space a zero-point noise vector is       .  The  th element of   equals                
   .  

The variance of this component is 

 

             
           

 

   

      
    

   

 

   

  

 

DATA VECTOR 

 

Because signal, shot noise and zero-point noise are independent of one another, it follows that 

 

                  

                                     

 

             
    

   

 

   

      
    

   

 

   

 
 

    
  

 

Each dimension’s variance subsequently scales the     coefficients which are then combined to yield 

power spectra. 

 

  



Fourier Transforming the Modes 
 

This process is too complicated to detail here in total.  I’ll cover the bullet points. 

 

 Construct a      FFT grid that is more than twice the length of the survey in each direction.  In 

this way the vast majority of gridboxes will equal zero. 

 

 Split each eigenvector element fractionally amongst the grid boxes its cell intersects. 

 

 Use MATLAB’s fftn routine to Fourier transform the vector created in the above step.  The 

output looks something like this: 

 

 The following subroutine breaks the signal into grid boxes, Fourier transforms it and exports the 

coefficients as they would be reported in C. 

 

C index                            

1 0 0 0    1         
  

2 0 0 1    2         
  

3 0 0 2    2         
  

4 0 0 3    2         
  

5 0 0 4    1         
  

6 0 1 0    1         
  

7 0 1 1    2         
  

              

          -1 -1                 1                 
 

 

 

 

 The                  coefficients are averaged using the above table and used to scale the 

variances in each bin like          
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A Discrepancy? 
 

I tried using both the     and     coefficients to plot the analytic spectra.  I see no reason why they 

shouldn’t yield the same results, but here’s what comes out. 

 

 
 

 This leads me to suspect that the method of developing the coefficients is incorrect.  



Analytic Power Spectrum – Fiducial Power Spectrum 
 

We start with the fiducial power spectrum convolved with top-hat window functions.  The most 

appropriate filtering kernel, or window   , is the following, 

 

                          
                        

   

 

In Fourier space the window function is 

 

                         
 

    
      

  
 

 

  

The convolved power spectrum is 

                      

 

Here are the matter power spectra. 

 
 

  



Here are the galaxy power spectra assuming      . 

 

 

 

SML98 approximate the redshift space correlation function to be 

 

                 
   

      
   

      
   

  

 

where 

  
       

 

   
                   

 

Here    is the spherical Bessel function.     is the Legendre polynomial.  The coefficients are  

 

      
 

 
  

 

 
   

 

  
              

 

      
 

 
  

 

 
                  

 

 
   

 

 
   

 

 
              

 

    
 

  
           

 

  
                 

 

 
   

 

  
 

 

 
             



 

The angles follow this geometry, 

 

 
 

         
     

    
   

 

     
    

                

 

        
     

 
       

 

There is an issue regarding which value of   to use.  The Euclidean distance between the centers of the 

cells is the easy choice, but there’s also the Liske geometry which takes time lag effects into 

consideration.  This geometry is explained in Appendix B. 

 

The distances and angles between the cells defines which value of             to place in the 

appropriate element of the signal covariance matrix (in cell-space)   . 

 

  



Analytic Power Spectrum – Empirical 2PCF 
 

I consider all           spectroscopically observed MGS targets within the northern STRIPEs of the 

improved spectroscopic footprint.  I calculate the 2PCF using               .  I count the 

number of galaxy pairs at each radial separation   (defined in a Euclidean sense) and normalize those 

counts in bins by dividing by         . 

 

I do the same for        random points.  The number of distinct RR pairs is           .  To 

correct for edge effects I also need DR pair counts of which there will be    .  The result is a two-

column table.  The resulting function is pictured below. 

 

       base/TwoPCF_MGS_pristine_z0p02_0p30_b0p05_32kRows_fwriteR 

  

 
 

The correlation function first runs negative at               Mpc.  I set        for     .  I 

execute a moving average with a 12-element window to smooth out much of the noise.  Each element is 

     and it’s convolved with     .  Here’s the result, 

 



 
 

There are actually two different ways this was done.  In the first, the randoms were mistakenly 

constrained to             instead of extending to       .  Only MGS targets with spectra were 

considered.  In the second, the randoms were extended to        and the lost objects were assigned 

the redshifts of their nearest neighbors. 

I convolve these with the window functions by translating into Fourier space and back again. 

 

               
       

  
      

 

The convolved power spectrum is 

          
      

  
 

 

      

 

Then translate back. 

          
 

   
       

       

  
        

 

Both integrations occur numerically with         from     to       and           from 

         to       (though it should have been 32…the fix didn’t seem to change things).  It’s 

possible that going back and forth between configuration and Fourier spaces introduces some numerical 

problems, but the figures below seem to suggest that the convolution is happening more or less 

correctly. 

 



 

 

[caption: 2-point correlation functions determined empirically from MGS galaxies.  Random points 

extended to       .  Lost objects were assigned redshifts of their nearest neighbors.] 

 

 

 

 

  



Appendix A 
 

We know that each element of the noise modes refers to a particular cell in space, so I should be able to 

take the Fourier transform of the noise modes in much the same way as I took the Fourier transform of 

the number counts.  This would include addressing the window function and normalization as before.  In 

this way I can generate a graph of the power spectrum of the noise modes themselves, a good figure to 

get no matter what. 

One can find the Fourier transform of the  th noise mode,      , weight them using the eigenvalue of 

the  th mode,   
   

, and sum them like this 

   
   

        
 
  

To see why, note that I can expand any particular fluctuation due to the zero-point error,   , where   is 

the cell label. 

           

 

  

where    is an unknown but random number.  The above equation is a decomposition of the noise 

fluctuations into the noise modes.  The Fourier transform of this would be 

               

 

  

To get the power spectrum of this I would need to square it and take the absolute value, 

                          
 
   

   

  

Because the noise modes are orthogonal, these should be as well, giving this a diagonal quality.  Further, 

   and    should be uncorrelated.     represents the overlap of one’s noise vector with    , or 

       .  To find        I begin with the matrix 

                 

where 

   

 
  

 

 
  

 
 

 
  

 
   

I note that if             , then   may be expanded as     .  Then 

                         



A comparison with the above expression reveals                     or 

         

The diagonal matrix   is filled mostly with zeros such that 

         
   

     

where     is the Kronecker delta.  Putting this all together, you see that the noise power spectrum is 

predictable directly from the eigenvalues and eigenmodes of the noise, 

             
   

        
 
  

 

  



Appendix B 
 

     is a function of the distance between points in space.  For two galaxies, its magnitude cannot be 

measured directly.  Instead, it must be calculated based upon the galaxies’ redshifts    and    and their 

angular separation  . 

 

Suppose Galaxy 2 emits a photon towards Galaxy 1.  At the instant Galaxy 1 receives the photon, it emits 

one of its own bound for earth that is later measured at   .  For the purposes of the correlation function, 

the relevant causally connected distance is     
 , the comoving separation between Galaxies 1 and 2 

at the moment Galaxy 1 receives and emits its photons. 

 

The solution for   
  (and   

 , the redshift of the photon received by Galaxy 1) was worked out by J. Liske 

(Mon. Not. R. Astron. Soc. 319, 557-561 (2000)) whose results I summarize here.  These derivations 

assume a homogeneous Friedmann (zero-pressure) cosmology with no cosmological constant (   ).  

Of course this is not strictly true, but since my survey occupies a relatively small volume of redshift space 

(      ) and correlations between distant volumes are quite small anyhow, this approximation should 

be acceptable. 

 

The solution below incorporates my continued assumption of a flat universe.  Here are some values 

needed for the final distance calculation. 

 

   
 

  
                                                      

 

                      

 

   
 

 

    

    

 

       
   

     
 

 
   

     
 

 
   

 

     

    

       
  

 

  
  

   

         
           

  
 

  
         

 

                     

 

   
  

    
  

 



  
  

 

      
 

 

    
      

                 
       

 

   is the Hubble constant,      is the dimensionless scale factor and    is the deceleration parameter.  

One can get by without invoking any particular value for    as long as he is willing to report   
  in units 

of     Mpc. 

 

The numerical value for the deceleration parameter is required, though, and several assumptions must 

be made in assigning its value, 

 

     
   

   
 

    

  

 

The equation of state, a relationship between pressure   (not to be confused with   in the Liske 

equations) and energy density   is usually complicated.  In cosmology, which deals primarily with dilute 

gasses, it takes the relatively simple form of      where   is a dimensionless number.  The most 

important values of   in a cosmological sense are those for nonrelativistic gases, relativistic gases (e.g. 

photons), and dark energy, 

 

        
    

   
    

 

     
 

 
  

 

       

 

The WMAP 7 results (Jarosik et al. 2010) calculate              
      from WMAP alone and    

             if BAO and    data are also included. 

 

Combining the acceleration equation 

 

  

 
  

   

   
        

 

the definition of    and the simple requirement that        and        , one can derive 

 

   
 

 
 

   

     
          

 

  

 

Further combining with the Friedmann equation in a flat universe, 

 



      
   

   
      

 

we find 

 

   
 

   
         

 

 

 

      
 

 
           

 

 

 

          
 

 
                 

 

where    is the critical energy density of the universe.  We assume the universe contains only radiation, 

matter, and a cosmological constant.  With       ,         , and         , I establish    

     . 

 


